战略管理培训师讲师案例:大数据战略
大数据的价值已经为电商、快消、广告等多个行业的案例所证明,但挖掘出大数据的价值并不容易。企业决策者在制定大数据战略时,需要从Vision(视野)、View(观点)、Value(价值)这“新3V”入手。大数据这个话题,从西到东,从IT业内到政府官员,已经火了两年,但还没有完全一致的定义。目前业界一般认同Gartner的描述,即:凡是具有“3V”特性的数据集,就是大数据。其一为Volume,极大的数据量;其二为Variety,极复杂的数据类型与数据来源;其三为Velocity,极高的数据产生、传播,以及反应速度。
大数据战略重要,但更重要的是如何执行,也就是大数据管理问题。也可以通过三步走的方式来解决。首先是如何获取、存储和保护数据;其二是数据丰富,即如何清洗、发现不同数据间的数据相关性;其三是数据洞察力,即通过分析、呈现与决策工具获得洞察力,并最终通过付诸行动,产生价值。微软的大数据管理平台,有着对大数据生命周期的全方位考虑,这也是为什么我们将Hadoop等开源架构,整合到微软的大数据平台里,一方面是将Hadoop作为对非关系型数据处理的补充;另一方面是将Hadoop作为一个服务,整合到微软的公有云与私有云平台中。值得强调的是,微软不是简单地将Hadoop迁移到微软的大数据平台上,而是真正的融合,会系统地考虑其可用性、可靠性、安全性、部署的简易性与灵活性,乃至对Hadoop上工具的集成与优化。与此同时,微软也会坚持开源的原则,将在Hadoop上做的一些研发工作回馈给社区,与社区形成良性互动。
从视野讲,企业CEO一定要把大数据、云计算作为企业核心战略,而不能仅仅把大数据当成是企业IT管理的一个方面。要下决心投入,无论软件方面还是硬件设施。企业要有自己的观点,即收集和处理数据的策略。例如股市,大家很多时候面对同样的数据,但是对数据的处理方式是不一样的,有些人说股市下行时候投入,有些人说股市下行时候要撤出。对同样的数据,甚至同样的软件,决策方式、观点不一样,处理结果就会大大不同,这个应该成为公司决策体系的一个核心。要在确定思路后,把对数据的分析,转化为能解决实际问题的执行,从而实现大数据的价值。正如马云最近所举的例子,在淘宝上比基尼卖得最好的省份是哪儿?是内蒙古和新疆,而不是人们通常会认为的海南、广东等沿海地区。大数据能帮助人们发现事物间隐藏的内在关联,但并不意味着能直接带来社会和商业价值。如果你是泳衣、防晒霜的生产商,又会制定怎样的营销策略呢?
对微软、亚马逊、谷歌、VMware这样的平台商而言,专心做好底层云计算基础架构和大数据服务平台;对淘宝、中国移动、政府各部委这样的数据商来说,原本只能自己用的数据,在这个模式下可以产生更多的社会和商业价值;对Salesforce、SAP、用友、金蝶等应用开发商来说,传统的、非常困难的、非常繁琐的数据整合,现在通过这样一个集市,可以首次实现把不同应用系统产生的数据整合起来,发现价值;对数据玩家来说,能够有一个朝阳式的投资平台可供选择,且不那么容易被大机构操纵。
未来的大数据生态,同样会遵循最朴素的市场规则,不同角色的组织和个人,通过逐渐成熟的交换机制,各取所需——平台商提供数据交易、数据分析的场所和基本工具;原始数据商提供自由交易的数据集;开发者提供基于数据集的应用和服务,以及定制化的分析和呈现工具;数据玩家如同股民,在市场中寻找值得投资的数据集或者机构进行投资,获得回报;现在人们炒房、炒股、炒黄金,将来或许人们会炒数据。微软已经通过Windows Azure上的Marketplace在进行这样的尝试,目前主要针对的是商业用户,已经能将第三方解决方案提供商、服务提供商、模块提供商和最终的商业用户通过这一虚拟市场联结在一起,可以发起自由交易。在这个基础上,我们又延伸出一个数据集市,让数据集的拥有者可以把数据发布到集市上,提供很多很细致的数据集,小到电影院座位和路况,大到国家宏观经济发展数据。这就能让开发者可以通过微软的一些简单易用的API或者工具,把这些数据整合到自己的环境里,开发新的应用。当数据公开、数据交易和大数据应用成为自然而然的习惯时,或许我们才可以说,大数据时代真的来临了。